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In order to investigate the evolution of binding efficiency in successful drug discovery programs, a data
set of 60 lead/drug pairs with known binding affinities has been compiled and analyzed. Low-end
thresholds for the binding efficiencies of viable leads and drugs have been derived. On average, the drugs
in the set are significantly larger and more potent but have similar lipophilicity relative to their
originating leads, suggesting that the ability to maintain low levels of lipophilicity while increasing
molecular weight is one of the keys to a successful drug discovery program. A number of examples
demonstrate that large increases in binding efficiency from leads to more elaborate drugs sharing the
same scaffold can be achieved. The importance of dissecting a lead structure to identify themost efficient
fragments and the option of sacrificing binding efficiency to optimize other properties are discussed, and
relevant examples are highlighted.

Introduction

Drug discovery is a multidimensional process in which a
number of different components must be simultaneously
optimized to converge ona viable drug candidate. Theprocess
generally begins with the identification of one or more lead
molecules that are then optimized through an iterative process
of design, modification, and evaluation. Modern drug dis-
covery programs generally rely on the knowledge of a mole-
cular target involved in some critical biological function and
on the ability to identifymolecules that interactwith the target
and inhibit its function. The potency measured against the
target is often the dominant criterion for lead selection, and it
usually remains the primary driver in the early stages of lead
optimization. However, modern medicinal chemists have
become increasingly cognizant of the importance of modulat-
ing the physical properties of their leads early on in the process
to avoid being pigeonholed in highly unfavorable regions of
property space. One key parameter to be considered in this
context is molecular weight, and two conflicting trends have
been observed in this regard: (1) a significant increase in
molecular weight relative to the initial lead(s) is often required
to achieve the necessary level of potency,1,2 and (2) someof the
key properties that determine the druggability of a molecule
(e.g., solubility, metabolic stability, oral bioavailability) tend
to deteriorate as molecular weight increases beyond a certain
point.3,4 When assessing the viability of a molecule it is there-
fore important tomonitor both potency andmolecularweight
to ensure that the appropriate balance can be achieved at the
end of the optimization process. The concept of binding
efficiency provides a convenient means of assessing the rela-
tionship between potencyandmolecularweight,5 and it is now
routinely used as one of the guiding factors in the process of
lead selection and in the early stages of lead optimization.
Binding efficiency is a measure of the binding energy per unit

of mass for a given compound relative to its molecular target.
A few different definitions have been proposed for this para-
meter, which is often referred to as “ligand efficiency” (LEa):

LE ¼ ΔGbinding

no: of heavy atoms

LE ¼ pKi; pKd; or pIC50

no: of heavy atoms

LE ¼ pKi; pKd; or pIC50

MW ðkDaÞ
Although a rigorous computation of binding efficiencywould
require the use of a true binding constrant, actual Kd values
are rarely measured in drug discovery programs, and Ki or
IC50 values are commonly used as surrogates. The third
definition above, also referred to as “binding efficiency index”
(BEI),6 will be used throughout the rest of this paper. While
the importance of maximizing efficiency is now well under-
stood and widely accepted, clear guidelines defining the
desirable and the acceptable levels of binding efficiency at
various stages of a drug discovery program have yet to be
established.The goal of this studywas to investigate the ligand
efficiency trends in successful drug discovery endeavors,
reassess some common assumptions on lead viability and
derive new or revised guidelines to be applied in future drug
discovery programs. A number of papers have been published
on this topic in recent years, and some of themhave attempted
to analyze the evolution of binding efficiency in the course of
lead optimization programswith the goal of establishing some
ground rules. A recent study published by researchers at
Abbott7 analyzed the trends observed in a number of inter-
nal lead optimization programs and concluded that, once
an optimal lead scaffold is selected, the binding efficiency
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remains relatively constant during the optimization process if
the scaffold is preserved and optimal substitutions are incor-
porated at each step of the way. On that basis, the minimum
size of the optimized molecule can be predicted from the
efficiency of the initial lead and the desired affinity. A
subsequent study published by researchers at Johnson &
Johnson8 found that the maximum achievable binding effi-
ciency decreases with molecular size. This relationship can be
explained with the observations that (a) the relationship
between the ligand surface available for interaction and the
atom count is not linear, as a proportionally larger number of
atoms become partially or totally buried as size and complex-
ity increase and (b) an ideal fit becomes statistically less likely
as the molecule becomes more complex.9,10 If we combine the
findings of these two studies, the conclusion is that the binding
efficiency of anoptimal lead canbemaintainedatbest andwill
likely decrease during the optimization process, at least when
the scaffold is preserved. If that were true, the binding
efficiency of a viable lead should be equal to or higher than
the efficiency one expects to need in the optimized drug.
Verifying the validity of these assumptions and deriving new
or revised guidelines were two of the main goals of this study.
The design of the study entailed the following steps:

(1) generation of a database of lead/drug pairs with
known binding affinities;

(2) calculation of binding efficiencies and other relevant
descriptors;

(3) analysis of the variations of binding efficiency from
beginning to end of the drug discovery process and
their dependency on other parameters;

(4) reassessment of published guidelines/dogma on lead
viability;

(5) establishment of new/updated guidelines for lead
selection/optimization.

Methods

A database of lead/drug pairs was generated as a result of a
thorough search of the literature, online sources detailing names
and structures of approved drugs, and existing drug databases.
The lead/drug pairs identified in the search were incorporated in
the database if the following criteria were satisfied:

(1) The lead was reported or clearly identifiable as com-
pound no. 1 in the discovery path.

(2) The binding affinity (as Ki, Kd, or IC50) was reported for
both lead and drug.

(3) The same assay was used to measure the affinity of lead
and drug.

(4) The lead was not an approved drug at the time of
discovery.

(5) If multiple drugs were based on the same lead, only one
pair was included.

(6) Withdrawn drugs were excluded.

The search resulted in the identification of 60 lead/drug pairs
satisfying the above criteria. Four of the drugs (benazeprilat,
fosinoprilat, dabigatran and oseltamivir carboxylate) are admi-
nistered as prodrugs. Two of the 60 drugs were approved bet-
ween 1978 and 1990, while the remaining 58 were approved
between 1991 and 2008. The discoveries took place in 40 different
companies, and the targets encompass 23 enzymes and 16
receptors.

The calculations of ClogP and ClogD7.4 have been performed
with the calculator plugins fromChemAxon.11 The computation
of the maximum common substructure between leads and corre-
sponding drugs has been performed using an internally deve-
loped program. Property distributions, histograms, and plots

have been generated with Microsoft Excel. The snapshots of the
3D structures have been generated with PyMOL.12

Results and Discussion

Quality and Scope of the Data Set. Large amounts of data
are available today for the vast majority of marketed drugs
from databases, review articles and a variety of other
sources. However, compiling a sizable data set of lead/drug
pairs with the corresponding binding affinities proved to be
challenging for a number of reasons. First, drug discovery
programs are often poorly documented in the literature, and
the published reports often lack clear and detailed informa-
tion about the early stages of discovery. Second, prior to the
past 3 decades, much of drug discovery was not target-
driven, and binding data was rarely used as the guiding
factor. Third, many drugs target complex systems for which
binding data is difficult to obtain. Fourth, the assays often
evolve in the course of a program and as a result the assays
used to test the initial lead and the final drug can be different.
And fifth, a surprisingly high number of drugs are routinely
approved when the mechanism of action and/or the exact
molecular target are still unknown (at least 15 examples can
be found in the 2007-2009period alone13). For these reasons
the data set compiled for this study could only cover a small
fraction of the currently available drugs. However, the vast
majority of the drugs in the data setwere approved in the past
2 decades. Considering that the number of novel small
molecule drugs approved in the same time period can be
estimated to be around 250-300, the data set used here can
be regarded as a highly representative sample of modern
drug discovery programs. The drugs in the data set are
structurally diverse and encompass a large number of targets
and therapeutic areas. Additionally, the criteria applied in
the selection of viable drug/lead pairs minimized the bias
toward particular compound classes that were developed
from common leads and maintained a clear separation
between leads and drugs by excluding cases where a drug
was evolved from another drug.

Lead Identification Methods. The breakdown of the iden-
tification methods for the 60 leads analyzed in this study is
reported in Table 1. It is remarkable that one-quarter of the
leads were compounds previously reported in the literature,
while high throughput screening follows closely as the sec-
ond most common source of drug leads. Eighteen percent of
the leads were designed on the basis of targeted modifica-
tions (morphing) of the core scaffolds of compounds from
the literature, patents or existing drugs. The difference
between this category and that of literature leads is that in
the former the core scaffold of the source was deliberately
modified from the start resulting in a different chemical class,
often with initial loss of activity but gain of intellectual

Table 1. Breakdown of Lead IdentificationMethods for the 60 Leads in
the Data Set

Source No. of leads

literature compound 15

HTS 14

scaffold morphing from literature

or competitor compound

11

substrate or transition state analog 10

diversity screen 5

pharmacophore screen 3

screen against related enzyme 1

derivative of literature compound 1
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property, while in the latter the original scaffold was retained
for at least part of the optimization process. The fourthmain
category of leads is that of substrate or transition state
analogs, which accounts for 16.7% of the current set. Other
lead identification methods were significantly less common.
Overall, over 60% of the leads were based on molecules that
were previously known to be related to the target by virtue of
being inhibitors or substrates, while less than 40% were
completely novel molecules identified by screening ap-
proaches. In this group, only 8 lead compounds were identi-
fied through the use of computational methods, and 5 of
those 8 emerged from diversity screens. No lead in this set
was identified through a target-based virtual screen, suggest-
ing that for some reason docking-based virtual screening
methodologies are not yet making the desired impact on lead
discovery.

Impact of Structure-Based Design. The advances in the
field of protein crystallography have made the resolution of
the three-dimensional structures of protein targets a routine
task for soluble proteins and a realistic albeit challenging
possibility for membrane-bound targets. As a consequence,
the incorporation of structure-based design approaches in
the drug discovery cycle has taken place to different degrees
in the majority of pharmaceutical and biotech companies. A
search of the ProteinData Bank reveals that the 3D structure
of the target is now known for 36 of the drugs in the database
generated in this study. However, a thorough review of the
articles describing the path to the discovery of these drugs
shows that structure-based design methods were only ap-
plied in 11 cases. The reason is that in the remaining 25 cases
the structure of the target was solved after the end of the
program or when the program was advanced enough not to
require structural input for the final lead optimization steps.
The targets to which structure-based methods were success-
fully applied are listed in Table 2. HIV-1 protease remains
the prototypical target for structure-based drug design, with
the largest number of successful applications reported to
date. However, only about half of the HIV-1 protease inhi-
bitor drugs in the database were discovered with the help of
structure-based approaches, while the earliest to reach ap-
proval were the result of more traditional drug discovery
approaches. This partly dispels the notion that structure-
based design was responsible for the HIV treatment break-
throughs since the beginning. Another misconception that is
dispelled by this analysis is that kinase inhibitor drugs
generally resulted from structure-guided design programs.
The database in this case contains six of the eight currently
approved kinase inhibitor drugs, and based on the related
literature structure-based methods were only applied in
the discovery of two of them (dasatinib14 and lapatinib15).
For example, nowhere in the original reports is there a men-
tion of target structure in the discovery of imatinib,16-18

which is often referred to as one of the recent successes of

structure-based drug design. Notably renin, a target for
which a huge amount of structural and modeling work has
been reported, has finally born fruit in terms of producing an
approved drug, thus justifying the emphasis given to those
studies and the importance of structural information for this
challenging protease target.

Molecular Weight and Affinity Distributions. The molecu-
lar weight distributions for the leads and the drugs in the data
set analyzed in this study are reported in Figure 1A. The
distribution for the drugs is wider and fairly even between
200 and 600 Da, while three-quarters of the leads fall within
the narrower range of 200-400. The median values are 328
for the leads and 436 for the drugs. The histogram in
Figure 1B illustrates the distribution of the molecular weight
differences within drug/lead pairs. The drug is larger than the
lead in 82% of the cases, and the average molecular weight
difference is 89.5 Da, which is slightly smaller than the
difference of the medians when drugs and leads are analyzed
as two separate groups. Figure 2A illustrates the distribution
of the binding affinities for the two groups. In this case the
distribution is wider for the leads than it is for the drugs, as
the leads populate the low affinity region which is not an
option for the drugs. The distribution for the drugs is shifted
toward lower Ki values: the majority of the drugs have Ki

values between 0.1 and 100 nM, while the leads are centered
between 10 nM and 10 μM. The adjacent graph (Figure 2B)
shows the distribution of the affinity differences within drug/
lead pairs, expressed as ΔpKi. The drug is more potent than
the corresponding lead in 90% of the cases, and the average
difference in potency is 2 log units (100-fold), which is almost
identical to the difference of the median pKi values of drugs
and leads as separate groups. In summary, drugs are on
average about 100Da larger and 100 times more potent than
the corresponding leads, and in the vast majority of the cases
the drug is indeed both larger and more potent than its
originating lead. Exceptions are uncommon but they are
definitely observed.

Ligand Efficiency Distributions. The distribution of the
ligand efficiencies for leads and drugs is illustrated in
Figure 3A. The distribution is wider for the leads, as they
populate the lowest end of the efficiency spectrum which is
not viable for the drugs. Leads with ligand efficiencies as low
as 6.8 (which correspond to aMWof 631 and aKi of 53 μM)
have been successfully optimized to approved drugs, while
no drug in this set has an efficiency lower than 10. Ninety
percent of the leads have efficiencies above 12.4, while 90%
of the drugs have efficiencies above 14.7. These values could
be used as thresholds for the minimal desired efficiencies
when defining target profiles for a starting point and an end
point in a drug discovery program. Interestingly, the median
values for leads and drugs are identical at 18.4. Although this
observation alone would appear to be consistent with the
conservation of binding efficiency observed in the Abbott
study for idealized lead optimization programs, the bar
graph in Figure 3B shows how variable the ratio of the
ligand efficiencies can be within corresponding drug/lead
pairs. Efficiency changes of 20% or more in either direction
are observed in almost half of the pairs, thus showing that
large increases or decreases in ligand efficiency are common
throughout lead optimization programs. On average, drugs
are more efficient than their originating leads by 11%, thus
showing that the pairwise analysis in this case provides
slightly different results than the analysis of leads and drugs
as separate groups. In this data set the binding efficiency of

Table 2. Number of Drugs in the Database Discovered with the Aid of
Structure-Based Design: Breakdown by Target

Target No. of drugs

HIV-1 protease 4

influenza neuraminidase 2

renin 1

DPP-IV 1

HIV-1 reverse transcriptase 1

VEGFR-2 kinase 1

LCK 1
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the drug is higher than the binding efficiency of the corre-
sponding lead in 58% of the cases. Figure 4 illustrates the
distribution of the ligand efficiencies for the leads divided by
identification method. Leads derived from the literature
have the widest distribution and include the most efficient,

while substrate and transition state analogs tend to have the
lowest efficiencies. A plausible explanation for the latter is
that substrate and transition state analogs are often the only
viable option for targets like proteases with large and pre-
dominantly solvent-exposed active sites. In these cases a

Figure 1. (A) Molecular weight distribution for drugs and leads as separate groups. (B) Distribution of the molecular weight differences
between drugs and corresponding leads.

Figure 2. (A) Distribution of binding affinities for drugs and leads as separate groups. Ki, Kd, or IC50 values are used depending on the data
reported in the original papers. (B) Distribution of the affinity differences between drugs and corresponding leads, expressed asΔpKi,ΔpKd, or
ΔIC50.

Figure 3. (A) Distribution of binding efficiencies for drugs and leads as separate groups. (B) Distribution of the binding efficiency ratios
between drugs and corresponding leads.
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large contact surface is necessary to build up significant
amounts of binding energy due to the lack of enclosure, thus
requiring large ligands with inevitably low binding efficien-
cies. Leads identified by high-throughput screening have the
narrowest distribution of ligand efficiency, every example in
the set having efficiency between 10 and 25.

As mentioned in the Introduction, a study published by
Johnson & Johnson indicated that the maximum achievable
binding efficiency decreases as the size of the molecule in-
creases. The plot in Figure 5 illustrates the correlation between
molecular weight ratio and efficiency ratio within drug/lead
pairs. The trend is consistent with the Johnson & Johnson
findings, as increases in molecular weight tend to result in
decreases in efficiency. However, a closer inspection of the
plot highlights a few additional points: (1) All the pairs for
which the efficiency ratio is lower than 1 (drug less efficient
than corresponding lead) are situated in the upper left
quadrant, where the molecular weight ratio is higher than 1
(drug larger than corresponding lead). In other words, a
decrease in efficiency going from lead to drug always occurs
when the molecular weight increases. (2) The opposite is not
true. Efficiency increases going from lead to drug can and do
occur when the molecular weight increases as well, as evi-
denced by the pairs that populate the upper right quadrant
(drug both larger and more efficient than corresponding
lead). In fact, 69% of the drugs that are more efficient than
the corresponding lead are also larger, thus showing that an
increase in size does not inevitably lead to a decrease in
efficiency, and that in ideal lead optimization paths (which
we can assume are approximated by successful lead optimi-
zation endeavors) the efficiency can indeed be increased, in
some cases very significantly.

Variations in Lipophilicity: Lipophilic Ligand Efficiency.

Another common belief is that the lipophilicity tends to

increase in the course lead optimization programs, and as a
result drugs tend to have higher ClogP/ClogD relative to the
corresponding leads. The histograms in Figure 6 tell a
different story. The distributions of ClogP for leads and
drugs as separate groups are almost identical, and the
median values are 3.14 and 3.04, respectively. Over 75% of
leads and drugs haveClogPbetween 0 and 6. The variation of
ClogP within individual drug/lead pairs is within 2 units in
the vast majority of the cases, and the median difference is 0,
consistent with the difference of the medians for the two
groups. The distributions of ClogD at pH 7.4 for leads
and drugs as separate groups are also very similar, and the
median values are 2.04 and 2.11, respectively (data not
shown). The variations of ClogD7.4 within individual drug/
lead pairs are also within 2 log units in the vast majority of
the cases, and themedian difference is 0.09.We can therefore
conclude that the average lipophilicity of drugs and corre-
sponding leads is virtually identical. Considering that drugs
tend to have a significantly higher molecular weight than the
corresponding leads, it is clear that the added molecular
weight must carry an adequate proportion of polar and
lipophilic groups.

A variation of the concept of ligand efficiency has been
recently introduced tomeasure the extent to which binding is
driven by specific interactions between ligand and protein as
opposed to simple hydrophobic effects (binding in a protein
cavity as a way to escape from solvent).19 This new metric is
defined as “lipophilic ligand efficiency” (LLE), and it is
simply expressed as the difference between pKi (or pIC50)
and ClogP (or ClogD7.4):

LLE ¼ pKi ðor pIC50Þ-ClogP ðor ClogD7:4Þ
Thismetric can be interpreted as ameasure of how effectively
“grease” is utilized to achieve affinity (less grease, more
potency f higher LLE), or alternatively, it can be viewed
as a measure of how effectively lipophilicity was minimized
in the process of optimizing potency. It could be argued that
the binding affinity of a molecule for its target could be
broken down into a nonspecific component, which is the
tendency to transfer from water to a more lipophilic envir-
onment, and a specific component, which is the tendency to
bind to a particular protein site as a result of specific
interactions. It can be expected that a larger specific compo-
nent may lead to amore selective compound, and that would
be consistent with the findings from a recent study, where the
promiscuity of a set of molecules (and therefore the like-
lihood of undesired activities) was shown to be directly
proportional to ClogP (the nonspecific component).19 The
distributions of lipophilic efficiencies for leads and drugs
based onClogP are illustrated in Figure 7. The distribution is
shifted toward higher values for the drugs relative to the
leads whether ClogP or ClogD7.4 is used in the calculation.
The difference between the median lipophilic efficiencies of
drugs and leads as separate groups is 2.00 and 2.18 log units
depending on whether ClogP or ClogD7.4 is used in the
calculation. When the individual drug/lead pairs are ana-
lyzed, the drug has a higher LLE in 80% of the cases
according to both metrics, and the medians of the pairwise
differences are 1.53 and 1.56 log units when ClogP and
ClogD7.4 are used, respectively. This trend reflects the fact
that drugs are generally more potent than their correspond-
ing leads while having similar lipophilicity. This observation
can be translated into this important lesson: one of the keys
to a successful lead optimization program is the ability to

Figure 4. Distribution of the binding efficiencies for the leads in the
data set broken down by identification method. Only the four most
prevalent lead identification approaches are included.

Figure 5. Plot of binding efficiency ratio vs molecular weight ratio
for the 60 drug/lead pairs in the data set.
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maintain a relatively low level of lipophilicity in spite of the
inevitable increase in molecular weight that is often required
to achieve the necessary level of potency.

Scaffold Conservation and Impact on Ligand Efficiency.

The trends described so far are totally independent of the
degree of structural variation occurring between the leads
and the corresponding drugs. Arguably, the variations in
binding efficiency from the beginning to the end of the lead

optimization process are much more relevant and interpre-
table when the scaffold is preserved throughout the process.
The conservationof binding efficiencyhighlightedbyHajduk
and colleagues in internal Abbott programs was based on
series where the core of the molecule remained constant. In
the data set analyzed in the present study the conservation of
the molecular framework, defined as the totality of the rings
combined with the minimal set of linkers necessary to con-
nect them,20 was analyzed. The molecular framework of the
lead was fully preserved in the final drug in 21 out of 60 pairs
(35%). Ten of the 21 drugs in question preserve the entire
structure of the lead when the heavy atoms are considered,
and 31 drugs out of the 60 preserve at least 80% of the
structure of the lead. The distribution of the ligand efficiency
ratios for the 21 pairs in which the scaffold is preserved is
illustrated in Figure 8. Notably, there is a high percentage of
pairs in which the efficiency varies by 20% or more in either
direction from lead to drug. More significantly, 11 of the 21
drugs have higher efficiencies relative to the corresponding
leads in spite of the fact that 10 out of 11 also have higher
molecular weight. Evenmore significantly, in 6 of these pairs
the ligand efficiency of the drug exceeds the efficiency of the
lead by 30% or more, in stark contrast with the conclusions
from the Abbott study, according to which the efficiency of

Figure 6. (A) Distribution of ClogP for drugs and leads as separate groups. (B) Distribution of the ClogP differences between drugs and
corresponding leads.

Figure 7. (A) Distribution of lipophilic ligand efficiencies for drugs and leads as separate groups, expressed as a function of ClogP. (B)
Distribution of the lipophilic ligand efficiency differences between drugs and corresponding leads, expressed as a function of ClogP.

Figure 8. Distribution of the binding efficiency ratios between
drugs and corresponding leads in pairs where the entire framework
of the lead is conserved in the drug.
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an optimal scaffold can at best be retained when the ideal
optimization path is taken. These results show that at least in
some cases a lead based on an optimal scaffold can be
evolved into a drug that is significantly more efficient while
retaining the same scaffold and increasing the size. One could
argue that it cannot be unequivocally proved that the six
leads were based on the optimal scaffold for the correspond-
ing binding site. On the other hand, if the scaffold is still
present in the final approved drug, that is the closest one
could get to proving that point. Structures, targets and
binding data for the six pairs in question are reported in
Table 3. The targets are three enzymes (influenza neurami-
nidase, ACE and thrombin) and one receptor (angiotensin II
receptor). Three of the drugs have similar size and overall
structure as the corresponding lead, while the other three
drugs are significantly larger and less similar relative to their
leads. In three cases the drug has one additional charged
group relative to the lead, in two cases the formal charge is
the same and in one case the lead has one additional charged
group. Overall the analysis of the 2D structures and the
targets does not highlight any features that are common to all
six pairs, although charge emerges as a possible factor. The
crystal structures of 4 of the 6 drugs in complex with their
target are available from the PDB and provide an opportu-
nity to analyze the impact of the structural difference be-
tween lead and drug on the interaction with the target and to
dissect the factors responsible for the boost in efficiency.
Figure 9A illustrates a snapshot of the complex between
argatroban and its target thrombin. The drug contains two
methylated piperidine rings that are absent in the lead, and
one of them is carboxylated. Assuming that the common
portions of lead and drug maintain the same orientation,
position and interactions, the additional fragments present
in the drug engage in two hydrogen bonds (one involving a

negatively charged acceptor) and a number of hydrophobic
contacts. Each of these interactions may have contributed to
the affinity jump, but no specific interaction clearly stands
out as the main contributor. The complex between captopril
and its target ACE is illustrated in Figure 9B. In this case
both lead and drug are very small molecules and the only
structural differences between the two are a change of the
zinc binding group from carboxylate to thiol and the addi-
tion of a methyl group. The affinity skyrockets going from
590 μM to 23 nM, and due to the similarity in size binding
efficiency increases proportionally. The striking impact of
these small changes on potency is likely due to the change of
the zinc binding moiety. It is not uncommon to see dramatic
changes in affinity upon variation of a metal-binding war-
head, and that is what happens in this case. The thiol group
may achieve a better placement relative to the zinc ion as well
as a better interaction network around the metal. The
reduced desolvation energy required for binding of a thiol
(predominantly neutral in solution) relative to a carboxylic
acid (predominantly charged) may play a role as well. The
addedmethyl groupmakes additional hydrophobic contacts
that may further contribute to the increase in affinity. The
complex between oseltamivir carboxylate and influenza
neuraminidase is depicted in Figure 9C. In this case the drug
retains the entire structure of the lead, the only difference
being the alkylation of a hydroxyl group with a 3-pentyl
group. The etherification leads to a 6000-fold increase in
potency and a 30% increase in binding efficiency. The
interpretation of the causes is not obvious. Although the
pentyl group makes a number of additional van der Waals
contacts with the protein, the pentyl-binding region ismainly
polar and solvent exposed, and one would not expect such a
dramatic effect on potency simply as a result of hydrophobic
interactions. The reduced desolvation energy resulting from

Table 3. Drug/Lead Pairs in Which the Core Scaffold of the Lead Is Preserved and LE(Drug) > 1.3 � LE(Lead): Structures and Binding Data

a Ki, IC50, or Kd values are reported depending on availability. The same type of binding data is reported for each individual drug/lead pair.
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the alkylation of the hydroxyl group may play a role, and
there is certainly a chance that high energy water molecules
may have been displaced by the pentyl group. Unfortunately
the structure of the lead in complex with neuraminidase is
not publicly available and possible effects due to conforma-
tional changes in the protein active site cannot be fully
assessed. The complex between the same target and the
related drug zanamivir is depicted in Figure 9D. In this case
the difference between drug and lead is in the replacement of

a hydroxyl group with a guanidine, which results in a 20000-
fold increase in potency and a 57% increase in binding
efficiency. The explanation for the potency boost is more
apparent for this pair: the hydroxyl group in the lead
molecule only makes a weak hydrogen bond to a glutamate
side chain, while the guanidine makes four strong hydrogen
bonds to the protein, one of which involves two charged
partners. These hydrogen bonds take place in a relatively
enclosed region, which contributes to their effectiveness.

Figure 9. Illustration of the four drug/lead pairs with LE(drug)/LE(lead) > 1.3 for which the crystal structure of the drug/target complex is
available. The four drugs are argatroban (A), captopril (B), oseltamivir (C) and zanamivir (D). Each quadrant is organized as follows. Top: 2D
structures of drug and originating lead with the corresponding binding affinities. The common substructure is colored in magenta. Bottom:
snapshot of the crystal structure of the drug in complex with its target. The parts of the drug that are not present in the originating lead are
contained within the white circles.
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The target-bound structure is available for the lead as well
and shows that the active site conformation and the orienta-
tion/position of the scaffold are fully preserved between the
two complexes, thus confirming the validity of the interpre-
tation. Notably, structure-based design approaches were
used in the discovery of 2 of the 6 drugs described above

(zanamivir and oseltamivir carboxylate), as documented by
the corresponding accounts.21,22 Overall this analysis does
not reveal a common overarching pattern shared in all the
pairs where a large efficiency boost was achieved, but it
highlights some contributing factors. First, the knowledge of
the structure of the target can greatly help to identify the hot

Table 4. Drug/Lead Pairs in Which the Core Scaffold of the Lead Is Not Preserved and LE(Drug) > 1.3 � LE(Lead): Structures and Binding Data

a Ki, IC50, or Kd values are reported depending on availability. The same type of binding data is reported for each individual drug/lead pair.

Table 5. Drug/Lead Pairs in Which the Core Scaffold of the Lead Is Preserved and LE(Lead) > 1.3 � LE(Drug): Structures and Binding Data

a Ki, IC50, or Kd values are reported depending on availability. The same type of binding data is reported for each individual drug/lead pair.
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spots in the active site and fill them with potentially high-
impact moieties. Another recurring theme is the presence in
the drugs of charged groups, which under the appropriate set
of conditions can make highly effective interactions. Other
types of interactions and components can also be responsible
for massive increases in efficiency, and additional studies
may reveal that displacement of high energy water molecules
may be a key factor in some of the least interpretable cases.

Further analysis of the complete data set shows that there
are 6 additional drug/lead pairs where the scaffold is not
conserved and the binding efficiency also increases by 30%
ormore. Structures, targets and binding data for these 6 pairs
are reported in Table 4. Interestingly, 3 of these 6 cases
involveHIVprotease inhibitors. In 5 of the 6 cases the drug is
smaller than the corresponding lead molecule, thus showing
that at least in part the boost in efficiency was the result of
removal of ineffective or unnecessary fragments from the
lead structure. The HIV protease inhibitor saquinavir is the
only drug in this subset that is larger than the corresponding
lead, and in this case there is a significant scaffold change and
the similarity between lead and drug is relatively low. In the
other 5 cases the efficiency boost can be attributed to a
cleanup of the lead structure, reengineering of the scaffold
and other significant structural changes. This subset high-
lights the importance of dissecting a lead structure to identify
the most efficient fragment(s) and remove the unnecessary

atoms in order to begin the optimization process from the
most favorable starting point possible.

It is also informative to analyze the cases where the opti-
mization process led to a large decrease in binding efficiency.
The complete data set contains 6 drug/lead pairs in which the
scaffold is conserved and the efficiency of the drug is over
30% lower than that of the corresponding lead. Structures,
targets and binding data for these pairs are reported in
Table 5. Interestingly, in 3 of the 6 cases the target is a
protein kinase. The binding affinities of lead and drug are
very similar in 4 of these pairs, while the drug is considerably
more potent than the lead in the other 2. A simple analysis of
the 2D structures reveals a common pattern within this
subset: each of the drugs has at least one additional charged
group relative to the corresponding lead. This common
feature suggests that these molecules were functionalized
or further substituted in the late stages of the optimization
process to improve some key properties without affecting
binding to the target. Charged groups are commonly added
to enhance solubility, and it is not surprising that such a
measure would be required in the optimization of kinase
inhibitors, which tend to be lipophilic and highly insoluble.
The target-bound crystal structures are available for 4 of the
6 drugs in this subset, and snapshots from each of those
structures are presented in Figure 10. A quick inspection of
these structures reveals that the additional charged group

Figure 10. Snapshots from the crystal structures of four complexes: gefitinib/EGFR kinase (A), lapatinib/EGFR kinase (B), sunitinib/
VEGFR2 kinase (C) and topotecan/topoisomerase I (D). The white circles highlight the positions of the basic amino groups that are present in
the four drugs but not in the corresponding leads. In the case of sunitinib, the portion of the molecule containing the amino group was not
visible in the crystal structure, and the white circle indicates its approximate location.
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makes limited or no interactions with the target in all
four cases, thus providing no contribution to the binding
energy and consequently reducing binding efficiency. In the
case of lapatinib the side chain containing the charged
group is so floppy and unconstrained by interactions with
the target that its position cannot be defined crystallogra-
phically, thus resulting in a “truncated” crystal structure.
The accounts detailing the discovery of these four drugs
confirm that the charged moieties were incorporated to
address property-related issues ranging from limited solu-
bility to high protein binding or insufficient cellular con-
centration.23-26 In the case of alvimopan, one of the two
drugs for which the target-bound structure is not available,
the authors report that the addition of a charged group was
part of a strategy to minimize blood-brain barrier penetra-
tion.27 Overall the analysis of this subset highlights the
compromises that are often made at the late stages of drug
discovery programs, when binding efficiency may have to be
sacrificed in order to modulate specific properties without
affecting potency.

Lessons Learned and Suggested Guidelines for Lead Selec-

tion and Optimization. The key findings of this study can be
summarized as follows:

(1) On average, drugs and corresponding leads have
similar binding efficiencies but significant increases
or decreases along the lead optimization path are
common.

(2) 90% of leads have binding efficiencies over 12.4, and
90% of drugs have binding efficiencies over 14.7.

(3) Leads with efficiencies as low as 6.8 have been shown
to be viable if there is a clear design rationale.

(4) On average, pKi(drug). pKi(lead) but ClogP(drug) =
ClogP(lead), resulting in LLE(drug) . LLE(lead): a
significant increase in lipophilic ligand efficiency is
one of the recurring trends of successful drug discov-
ery programs.

(5) Increasing molecular weight to improve potency is
often inevitable. Maintaining similar lipophilicity
when increasing size is one of the keys to the success
of lead optimization programs.

(6) A large increase in binding efficiency (30% or more)
can be achieved even when the lead scaffold is re-
tained.

(7) Knowledge of the 3D structure of the target can help
identify the hot spots in the active site where binding
efficiency can be increased, thus lowering the require-
ment for an efficient starting point.

(8) Charge-charge interactions are often responsible for
large efficiency boosts, but other factors can also
contribute.

(9) Dissecting inefficient leads to then build on the most
efficient fragments can be an effective strategy at the
early stages of lead optimization.

(10) Binding efficiency canbe effectively traded to achieve
improved properties (e.g., higher solubility, reduced
protein binding) in the late stages of a lead optimiza-
tion program.

Conclusions

The availability of awealth of informationon the structures
and properties of known drugs enabled the derivation of solid
and well-established rules defining druglikeness.28,29 How-
ever, the understanding of what makes a good drug lead

is not equally advanced, partly due to the lack of a broad
and validated data set of genuine drug leads and their proper-
ties. Oprea and colleagues presented the first organized data
set of lead/drug pairs and highlighted some of the key
differences and similarities between leads and drugs.2,30 The
present study expanded on the comparative analysis of leads
and drugs by incorporating binding data and focusing on
binding efficiency as one of the key parameters. Previous
studies on the binding efficiency trends inmedicinal chemistry
and drug discovery programs suggested that the efficiency of
an optimal and minimally substituted lead scaffold can be
retained at best and will likely decrease in the course of lead
optimization. The present analysis produced interesting and
sometimes surprising findings. A number of cases were iden-
tified in which the efficiency of the lead was largely improved
while retaining the original scaffold and increasing the size,
thus showing that the efficiency of an optimal core scaffold
does not constitute a ceiling for a given congeneric series.
Contrary to commonly accepted dogma, it was also shown
that on average drugs and their originating leads have similar
lipophilicity in spite of significant differences in size and
potency, thus showing that increasing lipophilic binding
efficiency can be one of the keys to a successful lead optimiza-
tion process. Tentative thresholds for the acceptable binding
efficiencies of putative leads and prospective drugs emerged
from the analysis, which also highlighted the importance of
dissecting the lead structure to build on the most efficient
fragments when highly efficient starting points cannot be
immediately identified.

Overall this study represents another step toward a better
understanding of what makes a good lead structure and what
are the most effective strategies to optimize that structure.
Continued mining of the literature and a thorough documen-
tation of ongoingdrug discovery efforts should be encouraged
so that broader data sets can be generated and the trends and
guidelines presented here can be validated, reassessed or
further refined.
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